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Utilizing Retinotopic Mapping for a Multi-Target
SSVEP BCI With a Single Flicker Frequency

Alexander Maye, Dan Zhang, and Andreas K. Engel

Abstract— In brain–computer interfaces (BCIs) that
use the steady-state visual evoked response (SSVEP),
the user selects a control command by directing attention
overtly or covertly to one out of several flicker stimuli.
The different control channels are encoded in the fre-
quency, phase, or time domain of the flicker signals. Here,
we present a new type of SSVEP BCI, which uses only
a single flicker stimulus and yet affords controlling multi-
ple channels. The approach rests on the observation that
the relative position between the stimulus and the foci of
overt attention result in distinct topographies of the SSVEP
response on the scalp. By classifying these topographies,
the computer can determine at which position the user is
gazing. Offline data analysis in a study on 12 healthy volun-
teers revealed that 9 targets can be recognized with about
95 ± 3% accuracy, corresponding to an information transfer
rate (ITR) of 40.8 ± 3.3 b/min on average. We explored how
the classification accuracy is affected by the number of
control channels, the trial length, and the number of EEG
channels. Our findings suggest that the EEG data from five
channels over parieto-occipital brain areas are sufficient
for reliably classifying the topographies and that there is
a large potential to improve the ITR by optimizing the trial
length. The robust performance and the simple stimulation
setup suggest that this approach is a prime candidate for
applications on desktop and tablet computers.

Index Terms— Brain-computer interfaces, Neurocon-
trollers, Spatial filters, Pattern recognition.

I. INTRODUCTION

THE steady-state visual evoked potential (SSVEP) is a
brain response which can be measured by an elec-

troencephalogram (EEG) when a subject looks at periodic
luminance- or contrast-modulated stimuli [1]. It has the same
frequency as the stimulation sequence and a phase delay that is
fixed for a given stimulation frequency [2]. These properties,
together with the high signal-to-noise ratio of SSVEPs, are
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frequently exploited for brain-computer interfaces (BCIs) by
presenting a set of flicker stimuli which differ in their fre-
quency, phase, temporal pattern, or combinations thereof and
decoding the SSVEP response while the user pays attention
to the target stimulus [3].

Most SSVEP-based BCIs employ a set of fixed frequencies
to encode different control channels. Directing overt or covert
attention to a stimulus which flickers at one of these fre-
quencies increases the power at this frequency in the EEG,
which can be used as a feature for automatic classifica-
tion [4], [5]. Using this approach, up to 45 channels have
been encoded for a spelling application [6], and ITRs up to
320 bits/min have been achieved [7]. Various approaches to
optimize the performance of such frequency-coded SSVEP
BCIs, which are also referred to as f-VEP BCIs [8] or FDMA
(frequency division multiple access [9]) BCIs have been
developed [10], [11].

The approach we present in this article is fundamentally
different from these frequency-coded SSVEP BCIs. Instead
of decoding targets from power spectra, our approach clas-
sifies the spatial distributions of the SSVEP power across
the scalp (topographies) that are elicited by a single flicker
stimulus which appears at different positions in the visual field
of the user. Hence our approach encodes channels in the spatial
domain and therefore belongs to the class of spatial or SDMA
(spatial division multiple access) SSVEP BCIs.

Spatial properties of the SSVEP have rarely been exploited
for encoding channels in a BCI. However, there is a substantial
body of electrophysiological findings about the lateralization
of VEPs and SSVEPs which support the concept of an SDMA
BCI. Common textbook knowledge holds that extrafoveal light
stimulation elicits strong responses over visual cortical areas of
the contralateral hemisphere [12]. However, an ipsilateral acti-
vation maximum has also been observed for a pattern reversal
stimulus at 2 Hz and termed paradoxical lateralization [13].
This phenomenon seems to depend on the presentation of
the stimulus above or below the horizontal meridian in some
subjects, but may be absent in others [14]. These differences
may result from variations in the individual anatomical convo-
lutions of the cortex in relation to the electrode placement [15].
Differences of the lateralization in response to parafoveal
stimuli have been observed even at the level of the various
VEP components. For example, the N160 was found to be
stronger at contralateral electrodes, while the P120 was larger
at ipsilateral electrodes [16]. Together with the amplitude, also
the polarity of VEPs can change between upper and lower

1534-4320 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



MAYE et al.: UTILIZING RETINOTOPIC MAPPING FOR A MULTI-TARGET SSVEP BCI 1027

field stimuli [17]. Analysis of the visual evoked magnetic
response using MEG suggests that the dissociation between
the location of sources and their actual projection on the scalp
may be responsible for the observed inconsistencies of power
distributions [18], and that adequate models of the spatial
SSVEP patterns should include multiple local and distributed
sources [19]. As different stimulation frequencies can activate
different cortical networks, SSVEP topographies also depend
on the stimulation frequency [20].

These studies show that the retinotopic mapping, i.e. the
mapping of visual input from the retina to neurons in the visual
areas of the cortex, causes distinct EEG patterns which depend
on the position of a flicker stimulus in the visual field. This
led us to the hypothesis that at least the SSVEP topographies
for stimuli above and below the horizontal meridian and to
the left and right of the vertical meridian should be suffi-
ciently distinct from each other to facilitate their automatic
recognition. The critical link between the electrophysiological
studies and the application of their findings in a BCI is the idea
that a presentation of stimuli at various eccentricities when
the subject fixates a central location is equivalent to a central
stimulus presentation with the subject gazing at targets in the
periphery. This was confirmed in a study where the spatial
distribution of VEPs elicited by a flashed checkerboard pattern
was used to recognize at which corner of a rhombic stimulus
subjects were gazing [21]. As explained above, the different
parafoveal positions of the flicker associated with the four gaze
directions caused distinct ERP waveforms at the five electrodes
over occipital and parietal brain areas (Pz, O1, O2, Oz, inion).
A consistent classification accuracy of over 90% was achieved.
More recently, a VEP BCI study employed a central low-
speed reversal stimulation with subjects gazing at targets to
the left and right [22]. This resulted in a characteristic change
of the VEP waveform in the interval from 50 to 200 ms post-
stimulus between corresponding electrodes over the left and
right hemispheres at occipital, parietal and central regions.
Classification accuracies of 90% for two classes and 84.2%
for three classes were achieved.

The same idea using SSVEPs instead of VEPs was realized
by [23]. The study used a central LED flicker which was
flanked at the left and right side by black patches. A com-
parison of the SSVEP power at occipital electrodes O1 and
O2 allowed the method to recognize at which of the three
targets subjects were looking. A fourth control channel was
added by utilizing the Berger effect, i.e. by determining from
the occipital alpha power if subjects opened or closed their
eyes. An average classification accuracy of 78% was achieved
in four subjects. A preliminary study suggested that not only
the position of single stimuli in the visual field but even
more complex shapes can be reconstructed from the SSVEP
topography [24].

In addition to the application for SDMA BCIs, the retino-
topic mapping is also employed for increasing the signal-to-
noise ratio in conventional FDMA BCIs. In this setup, two
lights, flickering to the left and right of a fixation spot at
the same frequency but opposite phase, elicit SSVEPs over
the visual cortex in the respective contralateral hemispheres.
Taking the difference of the EEG signals from both locations

(e.g. O1-O2) still yields the SSVEP, but at the same time
reduces the noise waveforms that are common to both hemi-
spheres [25]. This visual half-field stimulation can also help
with reducing the number of stimulation frequencies in FDMA
BCIs by using different frequency combinations for the left
and right half-field stimuli [26], [27]. Two fundamental dif-
ferences distinguish visual half-field stimulation from our
approach. First, in BCIs using visual half-field stimulation,
a set of frequencies or combinations thereof is used to
encode different channels, whereas different locations in the
visual field of the user encode channels in the proposed
approach. Second, data classification is based on spectral
features of the EEG signals elicited by the visual half-field
stimuli, while our approach is based on the differences in the
SSVEP topographies when the user gazes at different targets.

In our study we implemented a nine-target SSVEP BCI
using only one centrally presented steady-state flicker stimu-
lus. Different targets were placed in different spatial locations
relative to the flicker stimulus. Overt attention to differ-
ent targets resulted in distinct spatial topographies of the
elicited SSVEP responses, which constituted the basis for
BCI classification. As the very first study of this new type
of SDMA BCI, the contribution of the present study is
threefold: first, we designed and implemented a nine-target
SDMA BCI paradigm; second, we developed a Canonical
Correlation Analysis (CCA) based algorithm for efficient
extraction of the SSVEP spatial topographies under multiple
overt attention conditions; third, we investigated the possible
number of targets for reliable BCI control based on the offline
classification performances. The offline results show that the
proposed BCI is a promising candidate for simple but efficient
BCI communication.

II. METHODS

A. Stimulation

The main function of the stimulation setup is to generate
a single visual flicker and to define fixation targets for the
subjects which bring the flicker stimulus in different positions
on the retina in relation to the fovea. This functionality is
provided by a stimulus, which resembles a clock-face (Fig. 1),
but has only 8 digits evenly distributed along the perimeter
and an additional digit in the center. The dial is presented
at a visual angle of 27° (∼26 cm) on an LCD computer
monitor (24 in, DELL 2405FPW, 55 cm viewing distance)
and flickers at 15 Hz, a quarter of the refresh rate. In humans,
the amplitude of the SSVEP response peaks at this fre-
quency [28]–[30], and at the size of the stimulus SSVEPs are
reliably evoked in all subjects.

For obtaining training data for the classifier, the gaze
direction of the subjects is cued by a small black disc (2°).
The target digit and the cue disc in the background are not
flickering; therefore, subjects always fixate stationary spots on
the screen.

B. Subjects and Experimental Procedure

Twelve subjects aged between 23 and 45 (6 females, aver-
age: 29 years) participated voluntarily in this study. They were
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Fig. 1. Stimulus (top) and timing (bottom) of the experiment. The large white disc (clock-face) flickers at the stimulation frequency. Targets are
indicated by a steady black background. The example shows the target sequence “5”, “7”.

mostly university students who had previously participated
in electrophysiological studies but not studies using visual
flicker or other BCI paradigms. They gave written informed
consent and received financial compensation. All of them had
normal vision and were free of neurological and ophtalmologi-
cal disorders. The study was approved by the ethics committee
of the medical association of the city of Hamburg, Germany.

Subjects were cued to fixate all 9 targets in random order.
They were instructed to pay overt attention to each new
target as soon as possible and then maintain fixation until
the next target was cued. They were requested to avoid head
movements, eye blinks, swallowing or any other muscular
activity apart from moving the eyes to the target. Each target
was shown for 4 s, and 1 s at the beginning of this epoch
allowed for the time needed to adjust the gaze direction. After
the presentation of all 9 targets, the screen was blanked for
2 s before the next random sequence of targets was presented.
Subjects could blink or swallow in this interval. Ten sequences
were presented in a block. Then a short break of 1-2 min
was administered. The first block was used to familiarize
subjects with the stimulation and the task. Then, another
six or seven blocks were recorded in total, depending on
the ability of the subject to avoid eye blinks. This resulted
in 60 repetitions (trials) per class in 9 of the twelve subjects,
and 70 repetitions per class in the remaining 3. An experiment
lasted between 1 and 1.5 h. Like in most SSVEP BCI
paradigms, subjects did not perform any training prior to the
data recording. As the spatial attention task was relatively
easy and straightforward, we only asked the subjects to gaze
at the cued digit with no additional behavioral measurements
such as eye-tracking or EOGs. Nevertheless, compliance with
the task was checked intermittently using a web-cam at the
top of the screen that was looking at the subject’s face. The
high classification accuracies suggest that all subjects reliably
carried out the task.

The stimulation software was written in Matlab (The Math-
works, Natick, MA, USA) using the Psychophysics Toolbox
extensions [31]–[33].

C. EEG Recording and Data Preprocessing

A 32-channel EEG was recorded using BioSemi’s
ActiveTwo AD-box (BioSemi instrumentation, Amsterdam,
The Netherlands). It uses active electrodes referenced to an

active common-mode-sense electrode and a passive driven-
right-leg electrode. Electrodes were placed according to the
10-20 international system. During stimulation, the data buffer
of the Fieldtrip toolbox [34] was running and storing EEG
data on a PC’s hard disk at a sample rate of 2048 Hz.
Recordings took place in a regular lab environment with
ambient illumination from ceiling lights and without any
electrical or acoustic shielding. Subjects were seated in a
reclining chair and encouraged to find a comfortable position.

Data were preprocessed offline by a notch filter to remove
line noise and a 1–60 Hz bandpass filter. They were then
downsampled to 512 Hz. In order to arrive at a conservative
estimate of the performance and to simulate the data process-
ing in a hypothetical online version of the paradigm, we did
not perform any artifact rejection.

D. Data Analysis and Classification
In principle, the distribution of the power and phases of

the SSVEP across all channels could be used for classifica-
tion. A differential weighting of the channels can facilitate
the classification process though, because channels have a
distinct sensitivity to power modulations caused by differ-
ent positions of the stimulus in the visual field. Moreover,
it can be expected that only the power modulations in very
narrow frequency bands around the stimulation frequency
and its harmonics carry information for target recognition.
These two aspects make our data a use case for Canonical
Correlation Analysis (CCA), which was shown to exceed the
frequency recognition accuracy of traditional power spectral
density approaches in the context of SSVEP-based BCIs [35].
The main idea of this approach is to find a set of linear
combinations between channels to maximize the correlations
between two multivariate signals. For frequency recognition,
a sine wave at the stimulation frequency is correlated with the
EEG signal observed in N channels. Technically, instead of a
single sine wave, a set consisting of a sine and a cosine wave
as well as their harmonics is used since the phase relation
between the template and the EEG signal is not known, and
considering harmonics can improve the recognition accuracy.

In formal terms, CCA determines the canonical coefficients
in matrices A and B such that the canonical correlations
r = [ρ1, . . . , ρM ] between AX and BY of two multivariate
signals X and Y become maximal. Here ρi = ρ (a(i)X, b(i)Y)
is the i th canonical correlation (ai and bi being the i th row
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Fig. 2. Schematic of the data analysis for training (upper part) and
testing (lower part) the BCI.

of A and B respectively), and M = min(rank(X), rank(Y))
is the number of canonical variables. Typically only the first
canonical correlation is used in subsequent analyses, but here
we apply the full vector r in the classification.

We employ CCA for determining the canonical correlations
r between the EEG signal X = [

x1(t)′, . . . , xL(t)′
]
, L the

number of channels, and a set of sine and cosine functions
at the stimulation frequency fst im and the second and third
harmonics:

Y =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

sin(2π fst im t)
cos(2π fst imt)
sin(4π fst im t)
cos(4π fst imt)
sin(6π fst im t)
cos(6π fst imt)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

′

(1)

We chose to include the second and third harmonics as we had
observed strong responses at these frequencies in almost all
subjects. All 32 channels were used for the CCA, i.e. L = 32.

The training phase of the BCI system comprises two steps,
computation of the filters and training of the classifier. First,
coefficient matrices A and B are computed for each of the
C = 9 target classes separately. Trials with EEG data when the
subject attended to target c are concatenated and submitted to
a CCA, yielding matrices Ac and Bc for each of the C targets.
Then, the coefficients of correlation between each trial filtered
with all C filters AcX (c = 1 . . . C) and the corresponding
reference signals BcY are computed. The resulting C × M
correlation coefficients constitute the feature vector for this
trial, which together with the trial’s label is used to train the
classifier. We use multi-class linear discriminant analysis [36].
This method projects multi-dimensional feature vectors in a
space in which the classes are maximally separated.

In the application phase, data from the trial to be classified
is filtered with all C filters Ac, and the correlation coefficients
with the corresponding reference signals BcY are computed.
The resulting correlations constitute the feature vector that is
forwarded to the classifier, which then outputs the recognized
target. Fig. 2 summarizes the training and testing procedures
in a flow diagram.

The proposed correlation-based feature extraction method
accounts for both, amplitude and phase information: given a

fixed pair of coefficient matrices A and B, data from two trials
with similar SSVEP amplitudes but opposite SSVEPs phases
result in canonical correlation coefficients of opposite signs
and similar absolute values. Thereby the distinct amplitude-
phase response patterns for different BCI commands
(as observed in Fig. 3) can be effectively captured.

The focus of the current study is to get an initial estimate
of the number of output channels that could be controlled by
a spatial SSVEP BCI. To derive this estimate, we grouped
the data in all possible combinations of 2, 3, 4 etc. out
of 9 classes and assessed the classification accuracy for
each combination by leave-one-sample-out cross-validation.
The combination that achieved the lowest validation error
was selected as the representative for the corresponding
group.

In a similar manner, we analyzed the effect of the number
of EEG channels on the classification accuracy. For each
channel, we ran a cross validation on the data with this channel
removed. Afterwards, the channel whose removal retained the
highest classification accuracy was dropped, and the procedure
was iterated on the remaining channels until 3 channels
were left.

In order to estimate the calibration time in a potential online
application of the proposed paradigm, we determined the
relation between the number of training trials and the resulting
classification accuracies. From the full data set of each subject,
we generated a series of subsets of increasing size by randomly
selecting trials until the required number for each class was
reached. Then leave-one-sample-out cross-validation was used
to assess the classification accuracy for this subset as described
before. This process of randomly subsampling the training data
and cross-validating the accuracy was repeated 100 times and
yielded an average classification accuracy for a training set of
the given size.

ITR was computed as

I T R = 60

T

(
log2 C + P log2 P + (1 − P) log2

1 − P

C − 1

)
(2)

where P is classification accuracy, C the number of classes
and T the time required for computing the output [37]–[39].

III. RESULTS

In order to verify our central hypothesis, that presenting
visual flicker at different positions in the visual field generates
distinct distributions of SSVEPs, we analyzed the SSVEP
response when subjects fixated the different targets. Figure 3
shows examples from the three subjects with the highest
classification accuracies.

The SSVEP power topographies (see Fig. 3a–c) show in
general the typical power maximum over occipital and parietal
areas. A systematic shift of the power maximum between
right and left occipital areas when gazing at the targets in
a clockwise sequence can be observed. When subjects gazed
at target 6, for example, the flicker stimulus appeared in
their right visual hemifield, hence an increase in the activity
over the visual cortex of the contralateral, i.e. left, hemi-
sphere was expected. The opposite relation holds for target 2.
However, subject b) shows activation maxima over the
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Fig. 3. a-c) Individual topographies of normalized power in the three subjects with the highest accuracy at 9 classes. Color represents power at
the stimulation frequency relative to the neighboring frequency bins (signal-to-noise ratio). d-e) Phase-amplitude plots of the single-trial SSVEP
responses in the same three subjects.

ipsilateral hemisphere, a paradoxical lateralization as described
by [13]. A similar trend can be seen for subject c) although
less clearly.

A comparison of the topographies along the vertical midline
reveals a shift of the power distribution towards the central
region. Another interesting comparison in subjects a) and c) is
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Fig. 5. a) Maximum classification accuracy when subsets of the nine
classes were used. Each line corresponds to one subject; the thick black
line is the average accuracy. b) Distribution of classification accuracies
across the different combinations of the number of classes given on
the abscissa. The size of each dot represents the number of such
combinations that afford the accuracy given on the ordinate. Dot sizes are
normalized to sum up to the same value for each number of classes. Data
are from a single subject (best performance). Chance levels decrease
monotonically from 50% for 2 classes to 11% for 9 classes.

of targets the number of subjects that achieved their best
accuracy with this combination. These counts are visualized
in Fig. 6. For two classes, there is a clear advantage for target
combinations in the most distant quadrants of the visual field.
When three classes are used, the central target was frequently
among the best combinations. The set of optimal combinations
of four targets resembles the one for three targets, with
a prominent appearing of the target at the bottom of the
stimulus (4). The set of five targets is dominated again by
targets in upper and lower hemifield.

We computed the ITR resulting from the obtained clas-
sification accuracies and analyzed the influence of the trial
length (Fig. 7). The ITR is rising with the number of classes
and reaches an average of about 40.8±3.3 bits/min across

Fig. 6. Lines connect class sets of highest discriminability when 2, 3, 4 or
5 classes have to be distinguished. Line thickness shows how frequently
the corresponding class pair was selected for best discriminability over
all subjects. Target 1 was slightly set off the center to minimize visual
overlap.

subjects for nine classes (Fig. 7a). This estimation is based
on the whole duration of 4 s for each target. Fig. 7b) shows
that for all subjects the ITR could also be improved by using
shorter trials. The average ITR increases to 51.4±5.5 bits/min
when trials of 3 s duration are used. Even shorter trials of 2s
can further increase the average ITR to 65.2±15.4 bits/min
at the expense of increasing the standard deviation. Hence
performance across users is more robust for longer trials. Note
that for all trial lengths, the first second, during which the user
adjust the gaze direction, is always discarded; therefore, in a
trial length of 2 s, for example, only 1 s of data is actually
used for the classification.

The former results were obtained by including all 32 chan-
nels in the classification procedure. Frequency-coded SSVEP
BCIs, in contrast, often use the signal from only a single or a
few electrode(s). An interesting question therefore is if the
proposed spatially-coded SSVEP BCI requires the EEG signal
from all over the scalp, or if local signals from a few
electrodes could be sufficient for achieving the same perfor-
mance. We addressed this question empirically by another
off-line analysis of the data to determine the relevance of each
channel. We devised an iterative schema which in each step
determined the electrode with the least negative impact on
the classification accuracy (estimated by leave-one-sample-out
cross-validation, cf. Fig. 5). This electrode was dropped from
further analyzes and the next iteration was started.

The effect of the gradual reduction in the number channels
that were employed in the classification is shown in Fig. 8a.
For all subjects this curve exhibits an inverted U-shape, with
a slight increase in classification accuracy when reducing
the number of used channels to about 20, a plateau until
the channel number is further reduced to about 8 and a
decrease for a reduction down to 3 channels. It is interesting
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Fig. 7. a) ITR for different numbers of classes. b) ITR as a function of
the trial length. Each line corresponds to one subject; the thick black line
is the average.

to note that the accuracies for operating the classification with
only 5 channels is the same or slightly better than with all
32 channels in all subjects.

To find out which the most informative channels in this
BCI approach are, we counted for each electrode in how many
subjects this electrode was among the set of 5 that “survived”
the iterative dropping schema. Figure 8b shows that in most
subjects the classification relied on channels at positions Pz,
PO3/4, P7/8, Oz and O1/2. The signals from these electrodes
seem to have the highest relevance for the high classification
accuracies that we achieved with the proposed BCI approach.

The effect that the size of the training set has on the
classification accuracy can be seen in Fig. 9. On aver-
age (black curve), accuracy decreases by about 5% when
only 20 instead of 60 trials per class comprise the train-
ing data. Thus training time could be reduced from about
50 minutes (like in the current study) to about 17 minutes
with only a minor drop in performance. For the best two

Fig. 8. a) Maximum classification accuracy (estimated by leave-one-
sample-out cross-validation) depending on the number of EEG channels.
Each line corresponds to one subject; the thick black line is the average
accuracy. b) Number of subjects for which the respective electrode
contributed to the highest accuracy when the classification was based
on only 5 EEG channels (out of 32).

subjects, even a single training session with 10 trials per
class (taking about 8 minutes) would be enough to achieve
a classification accuracy of more than 90%. Subjects with
a poorer performance have the steepest learning curves, and
with 60 training trials per class they can achieve a similar
performance.

IV. DISCUSSION

In this study, we presented a single visual flicker stimulus
of fixed frequency and position to subjects. By directing their
attention overtly to different target positions on the screen,
the stimulus was projected to different positions on their
retinas. We then investigated the retinotopic mapping to the
visual brain areas by analyzing power and phase distributions
of the SSVEP response. We found that these distributions are
sufficiently distinct to allow a classifier to recognize which
target the subject was attending to from the EEG data.

Whereas the SSVEP responses were highly idiosyncratic
regarding the spatial topographies of the amplitude and phase
responses, they were consistent enough within each subject
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Fig. 9. Classification accuracy (estimated by leave-one-sample-out
cross-validation) as a function of the number of training trials per class.
Each line corresponds to one subject; the thick black line is the average
accuracy.

to provide an average classification accuracy of 95±3% for
recognizing nine targets. Our method constructs target-specific
spatial filters by CCA and uses the canonical correlations
between the filtered data and a reference signal for classifi-
cation. EOG and other possible muscle artifacts are not likely
to induce a systematic bias for the observed high classification
accuracies, because the CCA method targets specifically the
stimulation frequency and locations over occipital and parietal
brain regions. Our results are in line with previous neuro-
physiological findings on retinotopic mapping in the human
brain [13], [14], [17]. We made a further step to show that
this mapping can be accurately identified at the single-trial
level using EEG.

Conventional SSVEP BCIs usually employ one stimula-
tion frequency for each output command. Different output
commands are coded by the SSVEP frequency when the
subjects are directly attending to one of the steady-state flicker
stimuli. Therefore, the number of targets available on the
computer screen is restricted by factors such as the screen’s
refresh rate and the responsive frequency range of the human
visual system. The proposed BCI system significantly extends
the conventional SSVEP BCIs and achieves multiple output
commands using only one flicker stimulus. In our design,
different output commands are coded by different spatial
locations relative to this stimulus, and the elicited SSVEP
topographies serve as the carrier of information about the
target of attention. As the proposed SSVEP BCI relies on
a spatial coding strategy rather than the frequency coding
strategy, the number of BCI output commands is determined
by the spatial “resolution” of the retinotopic mapping as
revealed by human EEG recordings. Our results suggest the
possibility of operating the proposed SDMA BCI with up to
nine simultaneous output commands. Whether more output
commands can be included will be investigated in our future
studies. Our findings about the retinotopic mapping of flicker
stimuli can potentially be incorporated in frequency-coded

SSVEP BCIs by extending each frequency-coded target to at
least up to nine spatial targets, which may greatly increase the
number of output commands.

Our paradigm has a number of advantages over conventional
SSVEP BCIs: First, it uses only a single stimulation frequency,
yet several control channels can be encoded. This has a
number of implications. Adjusting stimulation frequencies to
the subject’s individual response profile is simplified, because
the proposed paradigm requires only a single frequency with
a suitable SSVEP response. A single stimulation frequency
may also turn out advantageous for improving the system’s
ITR because cortical areas need not be entrained by different
frequencies with each new target selected. We plan to verify
these hypotheses with an online version of the proposed
method in a subsequent study. Parameters like the number
of electrodes or the size of the analysis window will also be
optimized in a follow-up study.

Second, the proposed interface is very economical with
screen space. It does not require a subdivision of the screen
into areas that generate the stimulation for the respective
control channel. It uses instead a single stimulation area, and
control channels figure on the screen just as points. Actually
the targets need not appear at all on the screen; they could be
likewise marked at the screen’s frame. Moreover, the screen
contents itself could be used as the SSVEP stimulus, be it
by blanking it or by reversing its contrast at the stimulation
frequency. A straightforward application for the present system
could be a virtual phone with digits on a dial like in the now
historic analog telephones.

And third, the simplicity of the overall system together with
the previously noted advantages allows us to anticipate mobile
applications using tablet PCs and even smart phones. The
precious screen space on mobile devices needs not be traded
off against the number of control channels. Moreover, our
explorative study revealed that high BCI performances could
be achieved with only 5 electrodes (plus reference), which
indicates that the proposed system can be implemented with
both simple, portable stimulation as well as recording devices.
Of course such applications require further investigations of
the dependency between the size of the stimulus and the
classification performance. The aim of this study was to
investigate the feasibility of a spatial SSVEP BCI. We did not
attempt to optimize neither the performance (e.g., number of
targets, trial duration, classification accuracy) nor user comfort
(e.g., number of electrodes). For instance, although subjects
do not have to gaze directly at a flickering screen area (as in
f-VEP BCIs), the relatively large size of the surrounding flicker
is likely to induce visual fatigue or discomfort. Nonethe-
less our study introduces a BCI method as an alternative
to existing, frequency-coded SSVEP BCIs. We conjecture
that it shares many of the advantages with these existing
approaches, like, for example, the modest training require-
ments, the resilience against EEG artifacts or the simple
stimulation setup, but that more research is needed to reveal
the most powerful approach.

We conclude by contemplating about the question why
spatial SSVEP BCIs have attracted relatively little attention
so far. We think that a major reason may lie in the quite
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diverse and at times inconsistent findings on the lateralization
of SSVEPs for extrafoveally presented stimuli as outlined
in the introduction. We admit that the current study does
not contribute much to clarify the causes of the consid-
erable variability of lateralized SSVEP topographies across
subjects or to systematize them. However, we demonstrate
that within each subject, the change with stimulus position is
systematic enough to enable an automatic recognition of the
target of overt attention. Notwithstanding that many details of
our method require further elaboration in follow-up studies,
we think that we have demonstrated the potential of the
lateralization effect for BCI applications.
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